Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Planet Health ; 8(3): e172-e187, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453383

RESUMO

Comprehensive but interpretable assessment of the environmental performance of diets involves choosing a set of appropriate indicators. Current knowledge and data gaps on the origin of dietary foodstuffs restrict use of indicators relying on site-specific information. This Personal View summarises commonly used indicators for assessing the environmental performance of diets, briefly outlines their benefits and drawbacks, and provides recommendations on indicator choices for actors across multiple fields involved in activities that include the environmental assessment of diets. We then provide recommendations on indicator choices for actors across multiple fields involved in activities that use environmental assessments, such as health and nutrition experts, policy makers, decision makers, and private-sector and public-sector sustainability officers. We recommend that environmental assessment of diets should include indicators for at least the five following areas: climate change, biosphere integrity, blue water consumption, novel entities, and impacts on natural resources (especially wild fish stocks), to capture important environmental trade-offs. If more indicators can be handled in the assessment, indicators to capture impacts related to land use quantity and quality and green water consumption should be used. For ambitious assessments, indicators related to biogeochemical flows, stratospheric ozone depletion, and energy use can be added.


Assuntos
Dieta
2.
PLoS One ; 18(5): e0285586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220132

RESUMO

Urgent action is needed to ensure humanity's future under climate change. Agriculture faces major challenges as it is both influenced by and contributes to climate change. Conservation agriculture sequesters carbon (C) in the soil due to practices such as reduced tillage and planting of cover crops. This study assessed effects of an innovative conservation agriculture popcorn (Zea mays) and wheat (Triticum aestivum) crop rotation in south-western France on soil C sequestration, GHG emissions and several environmental impacts. Two complementary approaches were used: i) a comparison based on field data and expert judgement to assess short-term effects and ii) modelling of three scenarios to quantify long-term outcomes. In both approaches Life cycle assessment (LCA) was used to compare popcorn and wheat rotations. The conventional rotation used ploughing, and its soil was bare between wheat harvest and popcorn sowing. Conservation agriculture used reduced tillage, cover crops, and compost of green waste. Impacts of compost production were allocated mainly to its waste treatment function, based on waste treatment cost and compost price. Simulation modelling of soil C was used to estimate the amount of C sequestered by the conservation and conventional crop rotations. LCA was combined with soil C modelling over 100 years to assess the long-term climate change impact of three scenarios for the popcorn and wheat rotation. These scenarios were 1) Conventional agriculture, 2) Conservation agriculture with cover crops only, 3) Conservation agriculture with cover crops + compost. Mean annual C sequestration and net climate change impact were -0.24 t/ha and 3867 kg CO2-eq./ha, respectively, for the conventional rotation and 0.91 t/ha and 434 kg CO2-eq./ha, respectively, for the conservation rotation. The climate change impact of the conservation rotation depended strongly on the allocation of composting impacts between the waste treatment and compost production functions. Compared to the conventional rotation, the conservation rotation had a lower marine eutrophication impact (-7%) but higher impacts for terrestrial acidification (+9%), land competition (+3%), and cumulative energy demand (+2%). Modelling over 100 years revealed that, at near soil C equilibrium, a conventional scenario lost 9% of soil C, whereas conservation agriculture scenarios gained 14% (only cover crop) and 26% of soil C (cover crop + compost). Conservation agriculture resulted in soil C sequestration over several decades, until a new soil C equilibrium was reached.


Assuntos
Dióxido de Carbono , Triticum , Mudança Climática , Agricultura , Solo , Produtos Agrícolas , Produção Agrícola
3.
Data Brief ; 38: 107356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34557572

RESUMO

Environmental data on organic products are needed to assess their environmental performance. The purpose of the ACV Bio project reported here was to generate environmental data as life cycle assessment (LCA) data for a sample of French organic production systems including cropping systems (annual crops, intercrops, forages), grassland, wine grapes, cow milk, calves, beef cattle, sheep, pigs, broilers and eggs. LCA was used to estimate environmental impacts of products from these systems. Recommended uses are to characterize part of the diversity of French organic farming systems and some of their environmental impacts, identify areas for improvement, perform eco-design and sensitivity analysis, and/or make system choices in a given context. However, these data do not represent average French organic products and should not be used as such. The MEANS-InOut web application was used to generate life cycle inventories (LCI). Impact assessment was performed using SimaPro v9 software. The Environmental Footprint 2.0 characterisation method was used to generate LCA data. These data were supplemented with three LCA indicators: cumulative energy demand, land competition (CML-IA non-baseline) and biodiversity loss. Three non-LCA indicators were also calculated for certain systems: diversity of crop families (for cropping systems), agro-ecological infrastructure (for sheep) and pesticide treatment frequency index (for grapes). In total, 173 products were modelled. LCA and non-LCA data are available in the Microsoft® Excel file at Data INRAE (https://doi.org/10.15454/TTR25S). LCI data are available in the AGRIBALYSE database and can be accessed using SimaPro and openLCA software. Farmer-practice data are available on demand.

4.
Data Brief ; 37: 107184, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169126

RESUMO

Organic vegetable farming systems in France have diverse farm structures, farming practices and socio-economic contexts. From April-July 2019, Pépin et al. [1] surveyed 165 farms using an online form. The questions about farming practices or socio-economic context did not require quantitative responses to make them simple and easy to answer. From a list of practices, farmers were asked which one(s) they used most often. Using decision rules, the answers were transformed into variables that are suitable for multivariate analysis. The data set also contains analysed data, including composite indexes derived from survey answers, as well as the number of the cluster to which each farm belonged, created after multivariate analysis and clustering performed on the data set.

5.
Data Brief ; 25: 104204, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31406900

RESUMO

This data article contains annotation data characterizing Multi Criteria Assessment (MCA) Methods proposed in the agri-food sector by researchers from INRA, Europe's largest agricultural research institute (INRA, http://institut.inra.fr/en). MCA can be used to assess and compare agricultural and food systems, and support multi-actor decision making and design of innovative systems for crop production, animal production and processing of agricultural products. These data are stored in a public repository managed by INRA (https://data.inra.fr/; https://doi.org/10.15454/WB51LL).

6.
Environ Sci Technol ; 52(3): 1330-1338, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29239602

RESUMO

In life cycle assessment (LCA), simple models are currently used to estimate cropping system nitrogen (N) emissions on farms. At large spatial scales (e.g., countries), these models are valid. At a smaller spatial scale (e.g., territories), these models may be less accurate, since they completely or partially ignore local conditions such as management practices, soil or climate. The purpose of this study was to consider the variability of those factors when estimating N emissions in LCA at the watershed scale. To this end, Syst'N, decision-support software based on a simulation model of crop and soil N dynamics at field and crop-rotation scales, was applied to predict N emissions from cropping systems in a coastal watershed (Lieue de Grève, France). Syst'N predictions were compared to N emissions estimated by AGRIBALYSE, a static site-dependent method at field and single-crop scales. Syst'N was more sensitive to site-specific soil properties than AGRIBALYSE. Estimates of N emissions that include spatial variability in soil and climate therefore become possible in LCA when a simulation model such as Syst'N is used in the inventory phase.


Assuntos
Produtos Agrícolas , Nitrogênio , Agricultura , França , Solo
7.
PLoS One ; 11(8): e0160397, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504959

RESUMO

A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.


Assuntos
Dieta , Meio Ambiente , Ácidos Graxos Ômega-3 , Carne/análise , Valor Nutritivo
8.
Environ Sci Technol ; 49(18): 10790-6, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26305678

RESUMO

One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.


Assuntos
Produção Agrícola , Modelos Teóricos , Nitrogênio/análise , Agricultura/métodos , Simulação por Computador , Produtos Agrícolas , Fertilizantes/análise , França , Nitratos/análise , Solo
9.
J Environ Manage ; 133: 222-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24388925

RESUMO

This study compared the environmental burdens of two broiler chicken production systems in Brazil and two in France. One Brazilian system represents large-scale production in the Center-West region of the country; the other is a small-scale production in the South. One of the French systems represents an extensive broiler chicken production system, known as "Label Rouge"; the other is a standard system. Life-cycle impact assessments were performed using the CML-IA characterization method. The main functional unit adopted was 1 tonne of cooled and packaged chicken, ready for distribution. For the systems and impacts studied, production scale did not affect the environmental impact, but production intensity did. The extensive Label Rouge system had the largest impact among the impact categories studied. This resulted principally from the high feed-conversion ratio of this production system (3.1 kg of feed per kg of live weight) in conjunction with the fact that the feed-production stage contributed most to the overall impact. The contribution of deforestation to the crop-production stage was significant, particularly for climate change, equaling 19% of total emissions of CO2eq per tonne of cooled and packaged chicken, in the system of the Center-West of Brazil. The French systems were also affected, since they import crops from Brazil. The system of southern Brazil had less climate change impact because there is no longer deforestation in southern Brazil for crop production.


Assuntos
Meio Ambiente , Produtos Avícolas , Animais , Brasil , Galinhas , França
10.
J Environ Manage ; 91(9): 1831-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20452717

RESUMO

Soybean production and its supply chain are highly dependent on inputs such as land, fertilizer, fuel, machines, pesticides and electricity. The expansion of this crop in Brazil in recent decades has generated concerns about its environmental impacts. To assess these impacts, two representative chains supplying soybeans to Europe were identified: Center West (CW) and Southern (SO) Brazil. Each supply chain was analyzed using Life Cycle Assessment methodology. We considered different levels of use of chemical and organic fertilizers, pesticides and machinery, different distances for transportation of inputs and different yield levels. Because transportation contributed strongly to environmental impacts, a detailed study was performed to identify the routes used to transport soybeans to seaports. Additionally, we considered different levels of land occupation and land transformation to represent the impact of deforestation in the CW region. Environmental impacts were calculated for 1000 kg of soybean up to and including the delivery to Europe at the seaport in Rotterdam, at 13% humidity. Overall results showed that the impacts are greater for CW than for SO for all impact categories studied, including acidification (7.7 and 5.3 kg SO(2) eq., respectively), climate change (959 and 510 kg CO(2) eq.), cumulative energy demand (12,634 and 6,999 MJ) and terrestrial ecotoxicity (4.9 and 3.1 kg 1,4-DCB eq.), except eutrophication and land occupation. The same trend was observed for the crop-production stage. Efforts to reduce chemical fertilizers and diesel consumption can reduce CO(2) emissions. Although deforestation for crop production has decreased in recent years, the contribution of deforestation to climate change and cumulative energy demand remains significant. In the CW scenario deforestation contributed 29% to climate change and 20% to cumulative energy demand. Results also showed that although there are different transportation options in Brazil, the current predominance of road transport causes severe environmental impacts. In CW, road transport contributed 19% to climate change and 24% to cumulative energy demand, while in SO it contributed 12% and 15% to these impacts, respectively. Improvements in the logistics of transportation, giving priority to rail and river transports over road transport, can contribute significantly to reducing greenhouse gas emissions and decreasing energy use. Future studies involving Brazilian soybeans should take into account the region of origin as different levels of environmental impact are predicted.


Assuntos
Agricultura , Meio Ambiente , Poluição Ambiental , Glycine max , Meios de Transporte , Brasil , Mudança Climática , Eutrofização , Medição de Risco
11.
J Environ Manage ; 90(11): 3643-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19664872

RESUMO

This paper describes and applies EDEN-E, an operational method for the environmental evaluation of dairy farms based on the life cycle assessment (LCA) conceptual framework. EDEN-E requires a modest amount of data readily available on-farm, and thus can be used to assess a large number of farms at a reasonable cost. EDEN-E estimates farm resource use and pollutant emissions mostly at the farm scale, based on-farm-gate balances, amongst others. Resource use and emissions are interpreted in terms of potential impacts: eutrophication, acidification, climate change, terrestrial toxicity, non-renewable energy use and land occupation. The method distinguishes for each total impact a direct component (impacts on the farm site) and an indirect component (impacts associated with production and supply of inputs used). A group of 47 dairy farms (41 conventional and six organic) was evaluated. Expressed per 1000kg of fat-and-protein-corrected milk, total land occupation was significantly larger for organic than for conventional farms, while total impacts for eutrophication, acidification, climate change, terrestrial toxicity, and non-renewable energy use were not significantly different for the two production modes. When expressed per ha of land occupied all total impacts were significantly larger for conventional than organic farms. This study largely confirms previously published findings concerning the effect of production mode on impacts of dairy farms. However, it strikingly reveals that, for the set of farms examined, the contribution of production mode to overall inter-farm variability of impacts was minor relative to inter-farm variability within each of the two production modes examined. The mapping of impact variability through EDEN-E opens promising perspectives to move towards sustainable farming systems by identifying the structural and management characteristics of the farms presenting the lowest impacts.


Assuntos
Indústria de Laticínios , Monitoramento Ambiental/métodos , Poluição Ambiental/prevenção & controle , Animais , Bovinos , Modelos Teóricos
12.
Sci Total Environ ; 367(1): 367-82, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16488466

RESUMO

The challenge for environmental assessment tools, such as Life Cycle Assessment (LCA) is to provide a holistic picture of the environmental impacts of a given system, while being relevant both at a global scale, i.e., for global impact categories such as climate change, and at a smaller scale, i.e., for regional impact categories such as aquatic eutrophication. To this end, the environmental mechanisms between emission and impact should be taken into account. For eutrophication in particular, which is one of the main impacts of farming systems, the fate factor of eutrophying pollutants in catchments, and particularly of nitrate, reflects one of these important and complex environmental mechanisms. We define this fate factor as: the ratio of the amount of nitrate at the outlet of the catchment over the nitrate emitted from the catchment's soils. In LCA, this fate factor is most often assumed equal to 1, while the observed fate factor is generally less than 1. A generic approach for estimating the range of variation of nitrate fate factors in a region of intensive agriculture was proposed. This approach was based on the analysis of different catchment scenarios combining different catchment types and different effective rainfalls. The evolution over time of the nitrate fate factor as well as the steady state fate factor for each catchment scenario was obtained using the INCA simulation model. In line with the general LCA model, the implications of the steady state fate factors for nitrate were investigated for the eutrophication impact result in the framework of an LCA of pig production. A sensitivity analysis to the fraction of nitrate lost as N(2)O was presented for the climate change impact category. This study highlighted the difference between the observed fate factor at a given time, which aggregates both storage and transformation processes and a "steady state fate factor", specific to the system considered. The range of steady state fate factors obtained for the study region was wide, from 0.44 to 0.86, depending primarily on the catchment type and secondarily on the effective rainfall. The sensitivity of the LCA of pig production to the fate factors was significant concerning eutrophication, but potentially much larger concerning climate change. The potential for producing improved eutrophication results by using spatially differentiated fate factors was demonstrated. Additionally, the urgent need for quantitative studies on the N(2)O/N(2) ratio in riparian zones denitrification was highlighted.


Assuntos
Modelos Teóricos , Nitratos/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Criação de Animais Domésticos , Animais , Clima , Eutrofização , França , Estações do Ano , Suínos/crescimento & desenvolvimento
13.
Environ Manage ; 35(2): 161-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15902455

RESUMO

The control and prevention of nutrient pollution from fish farming plays an essential role in the French regulatory framework. Assessing nutrient emissions from fish farms is important in terms of farm authorization, taxation, and monitoring. Currently employed strategies involve both water sampling and empirical modeling. This article reports the work and outcomes of an expert panel that evaluated existing methodologies and their possible alternatives. The development and evaluation of a nutrient-balance approach was assessed as a potential alternative to currently used methodologies. A previously described nutrient-balance model was suggested and parameterized using expert choice, and its validity and applicability were assessed. The results stress that the nutrient-balance model provides more robust and relatively conservative waste estimates compared to the currently used methodologies. Sensitivity of the approach to the uneven data quality available at farm level, difficulties of on-farm measurements, as well as model requirements and limitations are discussed.


Assuntos
Aquicultura , Modelos Teóricos , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Monitoramento Ambiental , Pesqueiros , França , Truta , Poluição da Água/prevenção & controle
14.
Ambio ; 33(6): 316-23, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15387066

RESUMO

Understanding the environmental burdens associated with aquafeeds is a critical component for assessing and improving the environmental performance of aquaculture. The aim of the study was to assess the environmental impacts associated with feeds for rainbow trout production in France, using Life Cycle Assessment (LCA). The stages assessed are: the extraction of the raw materials, the production and transformation of the primary ingredients used, the manufacturing of the feeds, the use of the feeds at the farm, transport at all stages, and the production and use of energy resources. The assessment revealed that the use of fishery resources (such as biotic resource use) and nutrient emissions at the farm (such as eutrophication potential) contribute most to the potential environmental impacts of salmonid aquafeeds. Improvements in feed composition and management practices seem to be the best ways for improving the environmental profile of aquafeeds.


Assuntos
Ração Animal , Aquicultura , Conservação dos Recursos Naturais , Salmonidae , Animais , Eutrofização , Medição de Risco , Poluentes da Água/análise
15.
J Environ Manage ; 68(4): 377-86, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12877871

RESUMO

The current industrial pig production model is in crisis, due to its association with environmental pollution, doubtful product quality and lack of animal well-being. In Bretagne (France), a region of intensive pig production, a survey of seven stakeholder groups concerned with pig production was conducted, as part of a research programme dedicated to the assessment of the environmental impact of different modes of pig production. A very large majority of pig producers (93%) and their suppliers (100%) considers pig farms as an asset for the region, whereas a majority of scientists (58%), activists (78%) and consumers (54%) sees it as a handicap. Differences among stakeholder groups are minor with respect to the perceived importance of environmental and social issues. Stakeholders agree on the relative level of responsibility of pig farms with respect to specific problems. For all groups unpleasant odours and water quality come first with respect to responsibility, for most groups soil quality comes second, followed by product safety and air quality. For a future improved mode of pig production, 76% of pig producers and their suppliers prefer to adapt the current model, for all other groups the majority prefers an alternative model. While pig producers and their suppliers prefer a slurry-based housing system, all other groups prefer a straw-based system. Pig producers see the slurry-based system as technically superior and associate the straw-based system with poor working conditions, whereas consumers associate the slurry-based system in the first place with poor water quality and associate the straw-based system with less pollution. These results will be of use in the research programme on the environmental impact of modes of pig production, as they indicate the environmental impacts to be considered and their relative importance. The results will also help in deciding which options should be assessed. It is concluded that the poor image of the current pig production model and its production practices with consumers does not seem compatible with a sustainable demand for pork products.


Assuntos
Agricultura , Poluentes Ambientais , Opinião Pública , Suínos , Animais , Coleta de Dados , França , Abrigo para Animais , Humanos , Esterco , Odorantes , Saúde Pública , Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...